Journal of Advances in Mathematics and Computer Science

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Articles in Press
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Books
  • Testimonials
Advanced Search
  1. Home
  2. Archives
  3. 2021 - Volume 36 [Issue 2]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Robustness of T-test Based on Skewness and Kurtosis

  • Steven T. Garren
  • Kate McGann Osborne

Journal of Advances in Mathematics and Computer Science, Page 102-110
DOI: 10.9734/jamcs/2021/v36i230342
Published: 7 April 2021

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Coverage probabilities of the two-sided one-sample t-test are simulated for some symmetric and right-skewed distributions. The symmetric distributions analyzed are Normal, Uniform, Laplace, and student-t with 5, 7, and 10 degrees of freedom. The right-skewed distributions analyzed are Exponential and Chi-square with 1, 2, and 3 degrees of freedom. Left-skewed distributions were not analyzed without loss of generality. The coverage probabilities for the symmetric distributions tend to achieve or just barely exceed the nominal values. The coverage probabilities for the skewed distributions tend to be too low, indicating high Type I error rates. Percentiles for the skewness and kurtosis statistics are simulated using Normal data. For sample sizes of 5, 10, 15 and 20 the skewness statistic does an excellent job of detecting non-Normal data, except for Uniform data. The kurtosis statistic also does an excellent job of detecting non-Normal data, including Uniform data. Examined herein are Type I error rates, but not power calculations. We nd that sample skewness is unhelpful when determining whether or not the t-test should be used, but low sample kurtosis is reason to avoid using the t-test.


Keywords:
  • Chi-square distribution
  • exponential distribution
  • kurtosis
  • laplace distribution
  • normal distribution
  • skewness
  • T-distribution
  • T-test
  • uniform distribution
  • Full Article – PDF
  • Review History

How to Cite

Garren, S. T., & Osborne, K. M. (2021). Robustness of T-test Based on Skewness and Kurtosis. Journal of Advances in Mathematics and Computer Science, 36(2), 102-110. https://doi.org/10.9734/jamcs/2021/v36i230342
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Kim TK. T test as a parametric statistic. Korean J Anesthesiol. 2015;68:542-544.

Lumley T, Diehr P, Emerson S, Chen L. The importance of the normality assumption in large public health data sets. Annu Rev Public Health. 2002;23:153.

Kim HY. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor Dent Endod. 2013;38:52.

Declare M, Lakens D, Leys C. Why psychologists should by default use welch’s t-test instead of student’s t-test. IRSP. 2017;30:92-93.

Reineke DM, Baggett J, Elfessi A. A note on the effect of skewness, kurtosis, and shifting on one-sample t and sign tests. J. Stat. Educ. 2017;11:11.

Mishra P, Pandey CM, Singh U, Gupta A, Sahu C, Keshri A. Descriptive statistics and normality tests for statistical data. Ann Card Anaesth. 2019;22:67-70.

Mei D, Liu J, Ma F, Chen W. Forecasting stock market volatility: Do realized skewness and kurtosis help? Physica A. 2017;481:153.

Ho AD, Yu CC. Descriptive statistics for modern test score distributions: kurtosis, discreteness, and ceiling effects. EPM. 2014;75:365.

Cain MK, Zhang Z, Yuan KH. Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behav Res. 2017;49:1717.

De Luca G, Loperfido N. Modelling multivariate skewness in financial returns: A SGARCH approach. European Journal of Finance. 2015;21:1113-1131.

Delaigle A, Hall P, Jin J. Robustness and accuracy of methods for high dimensional data analysis based on Student’s t-statistic. Journal of the Royal Statistical Society B. 2011;73:283- 301.

Garren and Osborne; JAMCS, 36(2): 102-110, 2021; Article no.JAMCS.67278

Loperfido N. Skewness-based projection pursuit: A computational approach. Computational Statistics and Data Analysis. 2018;120:42-57.

Nanayakkara N. On the robustness and Johnson’s modification of the one sample t-statistics. Communications in Statistics - Theory and Methods. 1992;21:3079-3096.

Islam MQ. Estimation and hypothesis testing in multivariate linear regression models under non-normality. Communications in Statistics - Theory and Methods. 2017;46:8521-8543.

De Winter JCF. Using the Student’s t-test with extremely small sample sizes. Pract Assess Res Evaluation. 2013;18:4-6.

Komsta L, Novomestky F. moments: Moments, cumulants, skewness, kurtosis and related tests. R Package Version 0.14; 2015.
Available:https://CRAN.R-project.org/package=moments
  • Abstract View: 46 times
    PDF Download: 17 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Journal of Advances in Mathematics and Computer Science. All rights reserved.