On Almost Semi-Invariant Submanifold of A Normal Almost Paracontact Manifold
Article Sidebar
Published
Dec 28, 2020
    Page:
91-100
Main Article Content
Gajendra Singh
Department of Mathematics, Nilamber Pitamber University, Medininagar, Palamu, Jharkhand, India.
Abstract
In the present paper we have obtained some properties of an almost semi-invariant of a normal almost paracontact manifold. The integrability condition of distributions have also been discussed. According to these cases normal almost paracontact manifold is categorized and its used to demonstrate that the method presented in this paper is effective.
Keywords:
Almost Semi invariant submanifold, Normal almost paracontact manifold.
Article Details
How to Cite
Section
Original Research Article
References
Sato I. On a Structure similar to the almost contact structure I and II, Tensor, N.S., 30 (1976), 219 – 224 and tensor, N.S. 1977;31:199–205.
Bejancu A, Papaghuic N. Almost semi-invariant submanifold of a Sasakian manifold, Bull. Math. De la Soc. Dela R.S de Roumanic. 1984a;2(76):321-338.
Bejancu A, Papaghuic N. Semi-invariant sub manifolds of a Sasakian space form, collog. Math. 1948b;48:77-88.
Chen BY, CR-Submanifolds of a Kaehler manifold I, J. Differential Geometry. 1981;16:305-322:493–509.
Bagewasi CS, Siddesha MS. Semi-invariant submanifold of (LCS)n – manifold, Commun. Korean Math. Soc. 2017;1–9.
Bagewadi CS. Nirmala D, Siddesha MS. Semi-invariant Submanifolds of (K, u) contact manifold, Bull. Cal. Math. Soc. 2017;109(2):93-100.
Pandey HB, kumar A. Anti-invariant submanifolds of almost para contact manifolds Indian J. Pure Apple. Math. 1985;16:586-590.
Yano K, Kon M. On Contact CR-Submanifold, J. Korean Math. Soc. 1989;26:231-262.
− CR-Submanifolds of Kaehlerian and Sasakian manifolds, Birkhouser, Boston. 1983;361–364.
Kupli Erken. On normal almost paracontact metric manifold of fimensions. Facta Universitatis (nis), ser. Math. Inform. 2015;5:777–788.
Mehmet Atceken, Siraj Uddin. Semi-invariant submanifold of a normal almost paracontact manifold, Filomat. 2017;15:4875-4887. Available:https://doi.org/10.2298/FIL1715875A. Published by Faculty of Sciences and Math., University of Nis, Serbia.
Zamkovoy S. Cannonical Connections on paracontact manifolds, ann. Global Anal. Geom. 2009;36:37–60.
Bejancu A, Papaghuic N. Almost semi-invariant submanifold of a Sasakian manifold, Bull. Math. De la Soc. Dela R.S de Roumanic. 1984a;2(76):321-338.
Bejancu A, Papaghuic N. Semi-invariant sub manifolds of a Sasakian space form, collog. Math. 1948b;48:77-88.
Chen BY, CR-Submanifolds of a Kaehler manifold I, J. Differential Geometry. 1981;16:305-322:493–509.
Bagewasi CS, Siddesha MS. Semi-invariant submanifold of (LCS)n – manifold, Commun. Korean Math. Soc. 2017;1–9.
Bagewadi CS. Nirmala D, Siddesha MS. Semi-invariant Submanifolds of (K, u) contact manifold, Bull. Cal. Math. Soc. 2017;109(2):93-100.
Pandey HB, kumar A. Anti-invariant submanifolds of almost para contact manifolds Indian J. Pure Apple. Math. 1985;16:586-590.
Yano K, Kon M. On Contact CR-Submanifold, J. Korean Math. Soc. 1989;26:231-262.
− CR-Submanifolds of Kaehlerian and Sasakian manifolds, Birkhouser, Boston. 1983;361–364.
Kupli Erken. On normal almost paracontact metric manifold of fimensions. Facta Universitatis (nis), ser. Math. Inform. 2015;5:777–788.
Mehmet Atceken, Siraj Uddin. Semi-invariant submanifold of a normal almost paracontact manifold, Filomat. 2017;15:4875-4887. Available:https://doi.org/10.2298/FIL1715875A. Published by Faculty of Sciences and Math., University of Nis, Serbia.
Zamkovoy S. Cannonical Connections on paracontact manifolds, ann. Global Anal. Geom. 2009;36:37–60.