Some Fixed Point Results of Rational Type-Contraction Mapping in S-Metric Space

Yashpal *

Department of Mathematics, Govt. P. G. College for Women, Rohtak, India and Department of Mathematics, Kalinga University, Naya Raipur, India.

Rishikant Agnihotri

Department of Mathematics, Kalinga University, Naya Raipur, India.

*Author to whom correspondence should be addressed.


Abstract

In this paper, we demonstrate the existence of some fixed points of rational type contraction in context of S-metric space and we examine the T-stability of the P-property for some mapping. Also, we present few examples to illustrate the validity of the results obtained in the paper.

Keywords: Fixed point, rational type contraction, S-metric space


How to Cite

Yashpal, & Agnihotri, R. (2023). Some Fixed Point Results of Rational Type-Contraction Mapping in S-Metric Space. Journal of Advances in Mathematics and Computer Science, 38(10), 1–14. https://doi.org/10.9734/jamcs/2023/v38i101819

Downloads

Download data is not yet available.

References

Banach S. Sur les opérations dans les ensembles abstraits et leur application aux equations integrals, fund. Math. 1922;3:133-181.

Asadi M, Khalesi A. Lower semi-continuity in a generalized metric space. Advances in the Theory of Nonlinear Analysis and its Application. 2022;6(1):143-7.

Asadi M, Salimi P. Some fixed point and common fixed point theorems on G-metric spaces, Nonlinear Functional Analysis and Applications. 2014;21(3):523-530.

Eshraghisamani M, Vaezpour SM, Asadi M. New fixed point results on branciari metric spaces. J. Math. Anal. 2017;8(6):132-41.

Kannan R. Some results on fixed points, bull. Cal. Math. Soc. 1968;60:71-76.

Naddler SB Jr. Multi-valued contraction mappings. Pac. J. Math. 1969;30:475-488.

Asadi M, Karapınar E, Kumar A, α-ψ-Geraghty contractions on generalized metric Spaces. Journal of Inequalities and Applications. 2014;(1):423.

Amini-Harandi A. Fixed point theorem for quasi-contraction maps in b-metric spaces. Fixed Point Theory. 2014;5(2):351-358.

Asadi M. Discontinuity of control function in the (F,φ,θ)-Contraction in metric spaces. Filamot. 2014;31(17):5427-5433.

Hussein MM. Bin Saad MG, Al-Sayad A. A Fixed point results of relation type-contraction mapping in b-metric spaces with an application. Earthline Journal of Mathematical science. 2023;12(2):141-164.

Monfared H, Asadi M, Azhini M. F(ψ,θ)-contractions for α-admissible mappings on metric spaces and related fixed point results. Communications in Nonlinear Analysis (CNA). 2022;2(1):86-94.

Younis M, Singh D, Asadi M, Josh V. Results on contractions of reich type in graphical - metric spaces with applications. Filomat. 2016;33(17):5723–5735.

Bakhtin IA. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989;30:26-37.

Czerwik S. The contraction mapping in b - metric spaces. Acta Math. Inform. Univ. Ostrav. 1993;1:5- 11.

Czerwik S. Nonlinear set - valued contraction mapping in b -metric spaces. Atti Semin. Mat. Fis. Dell’Universita Modena Reeggio Emilia. 1998;46:263–276.

Sedghi S, Shobe N, Aliouche A. A generalization of fixed point theorem in s-metricspaces. Mat. Vesnik. 2012;64:258-266.

Sedghi S, Dung NV. Fixed point theorems on S-metric space. Mat. Vesnik. 2014;66(1):113–124.

Sedghi S, Shobe N, Dosenovic T. Fixed point results in s-metric spaces, NonlinearFunct. Anal. Appl. 2015;20(1):55–67.

Sedghi S, Kyu Kim J, Gholidahneh A, Mahdi Rezaee M. Fixed point theorems in s-metric spaces. East Asian Math. J. 2016;32(5):677–684.

Sedghi S, Gholidahneh A, Dosenovic T, Esfahani J, Radenovic S. Common fixedpoint of four maps in s-metric spaces. J. Linear Topol. Algebra. 2016;5(2):93–104.

Manoj K, Sushma D, Parul S. Fixed point theorems by using altering distance function in S-metric space. Communication in Mathematics and Application. 2022;13(2):553-573.

Jeong GS, Rhoades BE. Maps for which F(T)=F(T^n ). Fixed Point Theory and Appl. 2005;6:87–131.

Jeong GS, Rhoades BE. More maps for which F(T)=F(T^n ). Demostratio Math. 2007;40:671–680.

Fisher B. A fixed point theorem for compact metric spaces. Publ. Math. Debrecen. 1978; 25.

Chatterjee S. Fixed point theorems. Dokladi na Bolgarskata Akademiya Na Naukite. 1989;25(6):727-730.

Das BK, Gupta S. An extension of banach contraction principle through rational expression, Indian j. Pure Appl. Math. 1975;6(12):1455-1458.