Research on Equation \(\varphi\) (x)+2 = \(\varphi\) (x+2)

Huang Yize

Department of Mathematics, Zhejiang International Studies University, Hangzhou-310023, P. R. China.

Shen Zhongyan *

Department of Mathematics, Zhejiang International Studies University, Hangzhou-310023, P. R. China.

*Author to whom correspondence should be addressed.


Abstract

In this paper, we use the properties of Euler’s function, elementary methods and the idea of classification discussion to study the solvability of equation \(\varphi\) (x)+2 = \(\varphi\) (x+2)

Keywords: Euler function, equation, solution, Mersenne prime, Twin prime


How to Cite

Yize, H., & Zhongyan, S. (2023). Research on Equation \(\varphi\) (x)+2 = \(\varphi\) (x+2). Journal of Advances in Mathematics and Computer Science, 38(7), 122–132. https://doi.org/10.9734/jamcs/2023/v38i71778

Downloads

Download data is not yet available.

References

Pan Chengdong, Pan Chengbiao. Elementary Number Theory [M](Chinese). Beijing: Peking University Press; 1992.

Jones Gareth A, Jones Josephine M. Elementary Number Theory [M]. United Kingdom, Springer London; 2012.

Carmichael RD. On Euler’s φ-Function. Bull. Amer. math. Soc. 1907;13:241-243.

Paul Erdös. Some remarks on Euler’s φ-function and some related problems, Bull. Amer. Math. Soc. 1945;51:540-544.

Lal M, Gillard P. On the Equation φ(n) = φ(n + k). Mathematics of Computation. 1972;26:579–83.

Schinzel A. Sur l’ equation . Acta Arith. 1958;4:181–184.

Schinzel A, Wakulicz A. Sur l’ equation II. Acta Arith. 1959;5:425–426.

Makowski A. On Some Equations Involving Functions φ(n) and σ(n). The American Mathematical Monthly. 1960;67:668–70.

Patricia Jones. On the Equation Φ(x) + Φ(k) = Φ(x+k), Fibonacci Quart. 1990;28:162-165.

Klee VL. Some Remarks on Euler’s Totient. Monthly. 1947;54:332.

Moser, Leo. Some Equations Involving Euler’s Totient Function. The American Mathematical Monthly. 1949;56:22–23.

Burton DM. Elementary Number theory [M]. New York: Tata McGraw-Hill Publishing Company Limited; 2006.