A New Approach to Bicomplex Jacobsthal Matrix and Bicomplex Jacobsthal-Lucas Matrix Components

Ali Atasoy a* and Faik Babadağ b

a Keskin Vocational School, Kırıkkale University, Kırıkkale, 71800, Turkey.
b Department of Mathematics, Kırıkkale University, Kırıkkale, 71450, Turkey.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Abstract

In this present paper, we give a detailed study of a new generation of Bicomplex Jacobsthal matrix and Bicomplex Jacobsthal-Lucas matrix using Jacobsthal F-matrix and Jacobsthal Lucas F'-matrix. Also presented some formulas, facts, and properties about these matrices. In addition, a new vector called the bicomple Jacobsthal vectors \mathbf{B}_n and the bicomplex Jacobsthal-Lucas vectors \mathbf{B}_n' with matrix components is presented.

Some properties of this vector apply to various properties of geometry which are not generally known in the geometry of space. Then, using this matrix representation, we give some identities.

Keywords: Bicomplex Jacobsthal matrix; bicomplex Jacobsthal-Lucas matrix; Jacobsthal numbers; Jacobsthal-Lucas numbers.

*Corresponding author: Email: aliatasoy@kku.edu.tr;
1 Introduction

Bicomplex numbers are introduced in a book based on multicomplex spaces and function and are given from a number of different points of view of analysis. A bicomplex number is defined by

\[X = a + bi_1 + c i_2 + di_3 \]

where \(a, b, c, d \) are real numbers and \(+1, i_1, i_2, i_3 \) are units given by rules \(i_1^2 = i_2^2 = -1 \) and, \(i_1 i_2 = i_2 i_1 = i_3 \). Let \(X \) and \(X' \) be bicomplex numbers.

The addition and subtraction of \(X \) and \(X' \) are given by

\[X \mp X' = (a \mp a') + (b \mp b')i_1 + (c \mp c')i_2 + (d \mp d')i_3 \]

and multiplication of these numbers as follows

\[XX' = (a + b i_1 + c i_2 + d i_3)(a' + b' i_1 + c' i_2 + d' i_3) \]
\[= (aa' - bb' - cc' + dd') + (ab' + ba' - cd' - dc')i_1 \]
\[+ (ac' - ca' + bd' - db')i_2 + (ad' + da' + cb' - bc')i_3. \]

The conjugates of the bicomplex number \(X \) are described by \(X^{1i}, X^{12} \) and \(X^{13} \). In that case, there are different conjugations as follows, [1]:

\[X^{1i} = a - bi_1 + ci_2 - di_3, \]

\[X^{12} = a + bi_1 - ci_2 - di_3, \]

\[X^{13} = a - bi_1 - ci_2 + di_3. \]

The Jacobsthal numbers \(J_n \) are defined for all integers \(n \geq 0 \) by the second order recurrence relation

\[J_{n+2} = J_{n+1} + 2J_n \]

and initial conditions \(J_0 = 0, J_1 = 1 \). The Jacobsthal-Lucas numbers \(j_n \) are defined for all integers \(n \geq 0 \) by the same second order recurrence relation as

\[j_{n+2} = j_{n+1} + 2j_n \]

but initial conditions \(j_0 = 2 \) and \(j_1 = 1 \).

The next Jacobsthal number is also given by the recursion formula:

\[J_{n+1} - 2J_n = (-1)^n \] by \(J_{n+1} = 2^n - J_n. \)

The first recursion formula above is also satisfied by the powers of 2. The Jacobsthal number at a specific point in the sequence may be calculated directly using the closed-form equation:

\[J_n = \frac{2^n - (-1)^n}{3}. \]

The Jacobsthal numbers can be extended to negative indices using the recurrence relation or the explicit formula, giving

\[J_{-n} = \frac{(-1)^{n+1} J_n}{2}. \]

The following identity holds
2^n(j_n + j_n) = 3l_n^2.

The following Jacobsthal-Lucas number also satisfies:

\[j_{n+1} - 2j_n = -3(-1)^n. \]

The Jacobsthal-Lucas number at a specific point in the sequence may be calculated directly using the closed-form equation:

\[j_n = 2^n + (-1)^n. \] (3)

Different applications of Jacobsthal and Jacobsthal-Lucas numbers and their generalization have been studied by many mathematicians in almost all fields of science [2-11]. Jacobsthal F-matrix and Jacobsthal Lucas F’-matrix are presented in [12-16].

The nth-power of the F-matrix and F’-matrix are

\[F^n = F_n = \begin{bmatrix} j_{n+1} & 2j_n \\ j_n & 2j_{n-1} \end{bmatrix} \text{ and } F’^n = \begin{bmatrix} j_{n+1} & 2j_n \\ j_n & 2j_{n-1} \end{bmatrix} \] (4)

where

\[F^{n+1}F^n = F_{n+1}F_n = F_{2n+1} \text{ and also } \det(F^n) = (-1)^n(-2)^n. \] (5)

In this paper, we define the bicomplex Jacobsthal matrix and the bicomplex Jacobsthal-Lucas matrix by combining Jacobsthal numbers, Jacobsthal-Lucas numbers and bicomplex numbers. We present a matrix representation using some properties of these numbers.

A bicomplex Jacobsthal numbers and bicomplex Jacobsthal-Lucas numbers, respectively, are defined

\[X_n = j_n + j_{n+1}i_1 + j_{n+2}i_2 + j_{n+3}i_3 \text{ and } X’_n = j_n + j_{n+1}i_1 + j_{n+2}i_2 + j_{n+3}i_3, \] (6)

where \(j_n \) and \(j_n \) are the \(n \text{th} \) Jacobsthal, Jacobsthal-Lucas numbers and \(i_1^2 = i_2^2 = -1, i_3^2 = +1 \). If we start from \(n = 0 \), the bicomplex Jacobsthal number and bicomplex Jacobsthal-Lucas number can be written, respectively, as;

\[X_0 = 1i_1 + 1i_2 + 3i_3; \quad X_1 = 1 + 1i_1 + 3i_2 + 5i_3 \]

and

\[X’_0 = 2 + 1i_1 + 5i_2 + 7i_3; \quad X’_1 = 1 + 5i_1 + 7i_2 + 17i_3. \]

\section*{2 Bicomplex Jacobsthal Matrix and Bicomplex Jacobsthal-Lucas Matrix}

For \(n \geq 0 \), the \(n \text{th} \) bicomplex Jacobsthal matrix \(B_n \) and the \(n \text{th} \) bicomplex Jacobsthal-Lucas matrix \(B’_n \) are defined as

\[B_n = F_n + F_{n+1}i_1 + F_{n+2}i_2 + F_{n+3}i_3 \text{ and } B’_n = F_n’ + F_{n+1}’i_1 + F_{n+2}’i_2 + F_{n+3}’i_3 \] (7)

where \(i_1, i_2 \text{ and } i_3 \) are arbitrary units which satisfy the relations;

\[i_1^2 = i_2^2 = -1, i_3^2 = +1. \] (8)

Starting from \(n = 1 \), the bicomplex Jacobsthal matrix can be written as;

\[B_1 = F_1 + F_2i_1 + F_3i_2 + F_4i_3 \]
3 Some Identities on Bicomplex Jacobsthal Matrix

Identity 3.1. Let \(n \geq 1 \) be integer. Then, from the equality (1), we can give the following relation between bicomplex Jacobsthal matrices

\[
\begin{align*}
B_n - B_{n+1} i_1 - B_{n+2} i_2 + B_{n+3} i_3 &= 45 \left(\mathcal{F}_{n-1} + 2(-1)^n \mathcal{F}_{n-1} \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} \right).
\end{align*}
\]

Proof. We will give the proof of identity

\[
B_n - B_{n+1} i_1 - B_{n+2} i_2 + B_{n+3} i_3.
\]

We have,

\[
B_n - B_{n+1} i_1 - B_{n+2} i_2 + B_{n+3} i_3 = \mathcal{F}_n + \mathcal{F}_{n+1} i_1 + \mathcal{F}_{n+2} i_2 + \mathcal{F}_{n+3} i_3
\]

\[
- \left(\mathcal{F}_{n+1} + \mathcal{F}_{n+2} i_1 + \mathcal{F}_{n+3} i_2 + \mathcal{F}_{n+4} i_3 \right) i_1
\]

\[
- \left(\mathcal{F}_{n+2} + \mathcal{F}_{n+3} i_1 + \mathcal{F}_{n+4} i_2 + \mathcal{F}_{n+5} i_3 \right) i_2
\]

\[
+ \left(\mathcal{F}_{n+3} + \mathcal{F}_{n+4} i_1 + \mathcal{F}_{n+5} i_2 + \mathcal{F}_{n+6} i_3 \right) i_3
\]

\[
= \mathcal{F}_n + \mathcal{F}_{n+2} - \mathcal{F}_{n+4} - \mathcal{F}_{n+6}
\]

If we use the equality (4), then we can write as

\[
\begin{align*}
&= \begin{bmatrix} J_{n+1} & 2J_n \\ J_n & 2J_{n-1} \end{bmatrix} - \begin{bmatrix} J_{n+3} & 2J_{n+2} \\ J_{n+2} & 2J_{n+1} \end{bmatrix} - \begin{bmatrix} J_{n+5} & 2J_{n+4} \\ J_{n+4} & 2J_{n+3} \end{bmatrix} + \begin{bmatrix} J_{n+7} & 2J_{n+6} \\ J_{n+6} & 2J_{n+5} \end{bmatrix}
\end{align*}
\]

\[
= \begin{bmatrix} J_{n+1} - J_{n+3} - J_{n+5} + J_{n+7} \\ J_n - J_{n+2} - J_{n+4} + J_{n+6} \end{bmatrix} \begin{bmatrix} 2(J_n - J_{n+2} - J_{n+4} + J_{n+6}) \\ 2(J_{n-1} - J_{n+1} - J_{n+3} + J_{n+5}) \end{bmatrix}
\]

from the equalities (2) and (3), we get;

\[
= 15 \left(\begin{bmatrix} 3j_n & 3J_n \\ 3J_{n-1} & 3j_{n-1} \end{bmatrix} + \begin{bmatrix} j_n & j_n \\ j_{n-1} & j_{n-1} \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} j_n & J_n + 2J_{n-1} - 2J_{n-2} \\ J_{n-1} & 2J_{n-2} - 2J_{n-3} \end{bmatrix} + \begin{bmatrix} j_n & j_n \\ j_{n-1} & j_{n-1} \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} j_n & 2J_{n-1} \\ J_{n-1} & 2J_{n-2} \end{bmatrix} + 3 \begin{bmatrix} 0 & J_n - 2J_{n-1} \\ J_{n-1} - 2J_{n-2} & 0 \end{bmatrix} + \begin{bmatrix} j_n & 2J_{n-1} \\ J_{n-1} & 2J_{n-2} \end{bmatrix} + \begin{bmatrix} 0 & j_n - 2J_{n-1} \\ J_{n-1} - 2J_{n-2} & 0 \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} 2^n + 1 & 2^{n+1} \\ 2^n & 2^n \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} 3j_n & 3J_n \\ 3J_{n-1} & 3j_{n-1} \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} j_n & J_n + 2J_{n-1} - 2J_{n-2} \\ J_{n-1} & 2J_{n-2} - 2J_{n-3} \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} j_n & 2J_{n-1} \\ J_{n-1} & 2J_{n-2} \end{bmatrix} + 3 \begin{bmatrix} 0 & J_n - 2J_{n-1} \\ J_{n-1} - 2J_{n-2} & 0 \end{bmatrix} + \begin{bmatrix} j_n & 2J_{n-1} \\ J_{n-1} & 2J_{n-2} \end{bmatrix} + \begin{bmatrix} 0 & j_n - 2J_{n-1} \\ J_{n-1} - 2J_{n-2} & 0 \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} 2^n - 1 & 2^{n+1} \\ 2^n & 2^n \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} 3j_n & 3J_n \\ 3J_{n-1} & 3j_{n-1} \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} j_n & J_n + 2J_{n-1} - 2J_{n-2} \\ J_{n-1} & 2J_{n-2} - 2J_{n-3} \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} j_n & 2J_{n-1} \\ J_{n-1} & 2J_{n-2} \end{bmatrix} + 3 \begin{bmatrix} 0 & J_n - 2J_{n-1} \\ J_{n-1} - 2J_{n-2} & 0 \end{bmatrix} + \begin{bmatrix} j_n & 2J_{n-1} \\ J_{n-1} & 2J_{n-2} \end{bmatrix} + \begin{bmatrix} 0 & j_n - 2J_{n-1} \\ J_{n-1} - 2J_{n-2} & 0 \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} 2^n - 1 & 2^{n+1} \\ 2^n & 2^n \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} 3j_n & 3J_n \\ 3J_{n-1} & 3j_{n-1} \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} j_n & J_n + 2J_{n-1} - 2J_{n-2} \\ J_{n-1} & 2J_{n-2} - 2J_{n-3} \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} j_n & 2J_{n-1} \\ J_{n-1} & 2J_{n-2} \end{bmatrix} + 3 \begin{bmatrix} 0 & J_n - 2J_{n-1} \\ J_{n-1} - 2J_{n-2} & 0 \end{bmatrix} + \begin{bmatrix} j_n & 2J_{n-1} \\ J_{n-1} & 2J_{n-2} \end{bmatrix} + \begin{bmatrix} 0 & j_n - 2J_{n-1} \\ J_{n-1} - 2J_{n-2} & 0 \end{bmatrix} \right)
\]

\[
= 15 \left(\begin{bmatrix} 2^n - 1 & 2^{n+1} \\ 2^n & 2^n \end{bmatrix} \right)
\]
Identity 3.2. For \(n \geq 1 \)

\[
\mathcal{B}_n^3 \mathcal{B}_{n-1}^3 + \mathcal{B}_{n-1}^3 \mathcal{B}_n^3 = -93 \left(\mathcal{F}'_{2n-2} + \begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix} \right)
\]

where \(\mathcal{B}_n^3 \) is the conjugation with respect to the imaginary unit \(i_3 \).

Proof. Now we will prove the identity \(\mathcal{B}_n \times \mathcal{B}_n^3 + \mathcal{B}_{n-1} \times \mathcal{B}_{n-1}^3 \).

By using the equalities (1), (4) and (6), we get

\[
= \mathcal{F}_{2n-1}^2 + 2 \mathcal{F}_n^2 - 2 \mathcal{F}_{n+2} - \mathcal{F}_{n+3}^2
\]

\[
= \mathcal{F}_{2n-2}^2 + 2 \mathcal{F}_n^2 - 2 \mathcal{F}_{n+6}^2 - \mathcal{F}_{n+6}
\]

\[
= \begin{vmatrix} j_{2n-1} & 2 j_{2n-2} \\ j_{2n-2} & 2 j_{2n-3} \end{vmatrix} + 2 \begin{vmatrix} j_{2n+1} & 2 j_{2n} \\ j_{2n} & 2 j_{2n-1} \end{vmatrix} - 2 \begin{vmatrix} j_{2n+5} & 2 j_{2n+4} \\ j_{2n+4} & 2 j_{2n+3} \end{vmatrix} - \begin{vmatrix} j_{2n+7} & 2 j_{2n+6} \\ j_{2n+6} & 2 j_{2n+5} \end{vmatrix}
\]

If we use the equalities \(j_{n+r} - j_{n-r} = \frac{1}{3} (2^{n-r}(2^{2r} - 1)) \), \(j_{n+1} + 2j_n = 3(-1)^{n+1} \) and \(j_n = 2^n + (-1)^n \) in [4], we have;

\[
= -93 \begin{vmatrix} 2^{2n-1} & 2^{2n-1} \\ 2^{2n-2} & 2^{2n-2} \end{vmatrix}
\]

Identity 3.3.

\[
\mathcal{B}_{n+1}^2 - \mathcal{B}_n^2 = 4 (X_3 + X'_3 + 3 - 14 i_1 - 12 i_2) \mathcal{F}_n^{2n} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}
\]

Proof. By using the equalities (7) and (8),

\[
\mathcal{B}_{n+1}^2 \mathcal{F}_{2n+2} - \mathcal{F}_{2n+4} - \mathcal{F}_{2n+6} + \mathcal{F}_{2n+8} + 2 (\mathcal{F}_{n+1} \mathcal{F}_{n+2} - \mathcal{F}_{n+3} \mathcal{F}_{n+4}) i_1
\]

\[
+ 2 (\mathcal{F}_{n+1} \mathcal{F}_{n+3} - \mathcal{F}_{n+2} \mathcal{F}_{n+4}) i_2 + 2 (\mathcal{F}_{n+1} \mathcal{F}_{n+4} + \mathcal{F}_{n+2} \mathcal{F}_{n+3}) i_3
\]

126
Similarly, we can get

\[
\mathcal{B}_n^2 = \mathcal{F}_{2n} \begin{bmatrix} 80 - 40i_1 - 16i_2 + 4i_3 & 80 - 40i_1 - 16i_2 + 8i_3 \\ 40 - 20i_1 - 8i_2 + 4i_3 & 40 - 20i_1 - 8i_2 \end{bmatrix}
\]

\[
\mathcal{B}_{n+1}^2 - \mathcal{B}_n^2 = (20 - 60i_1 - 24i_2 + 40i_3)F_{2n} \begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix}
\]

\[
= 4(X_3 + X_3' + 3 - 14i_1 - 12i_2)F_{2n} \begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix}
\]

Identity 3.4. For \(n \geq 0 \), the \(n \)-th negabicomplex Jacobsthal matrix is

\[
\mathcal{B}_n = \begin{pmatrix} 2i_{n-1} & -2i_n \\ -i_n & i_{n+1} \\ n \end{pmatrix} X_0 \begin{bmatrix} 2X_1 \\ X_1 \end{bmatrix} = X_1 - (1 + i_2 + 3i_3)
\]

Proof. We will give proof of identity \(\mathcal{B}_n \). We have

\[
\mathcal{B}_n = \mathcal{F}_n - \mathcal{F}_{n+1} + \mathcal{F}_{n+2} i_2 + \mathcal{F}_{n+3} i_3
\]

\[
= (\mathcal{F}_n)^{-1}(\mathcal{F}_0 + \mathcal{F}_1 i_2 + \mathcal{F}_2 i_2 + \mathcal{F}_3 i_3)
\]

\[
= \begin{pmatrix} I_{n+1} & 2I_n \\ I_n & 2I_{n-1} \end{pmatrix}^{-1} \begin{bmatrix} 1 + i_1 + 2i_2 + 3i_3 & i_1 + i_2 + 2i_3 \\ i_1 + i_2 + 2i_3 & 1 + i_2 + i_3 \end{bmatrix}
\]

\[
= \begin{pmatrix} 2I_{n-1} & -2I_n \\ -i_n & i_{n+1} \\ -1 \end{pmatrix} X_0 \begin{bmatrix} 2X_1 \\ X_1 \end{bmatrix} = X_1 - (1 + i_2 + 3i_3)
\]

where \(X_1 \) and \(X_0 \) are bicomplex Jacobsthal numbers.

4 Some Applications on Bicomplex Jacobsthal Matrix

Let \(\mathcal{B}_n \) be the \(n \)-th bicomplex Jacobsthal matrix, for \(n \geq 0 \), these number is \(2 \)-th linear recurrence sequence. Then, we suppose the sets of \(C_2 \) and \(C_2 \) are
\[\mathcal{C}_2 = \{ \mathcal{B}_n | \mathcal{B}_n = \mathcal{F}_n + \mathcal{F}_{n+1} i_1 + \mathcal{F}_{n+2} i_2 + \mathcal{F}_{n+3} i_3, \ \mathcal{F}_n \text{ is } n^{th} \ \mathcal{F}-\text{matrix} \}. \]

and

\[\mathcal{C}_2' = \{ \mathcal{B}_n | \mathcal{B}_n = \begin{bmatrix} \alpha_n & \beta_n \\ \beta_n & \alpha_n \end{bmatrix} ; \alpha_n, \beta_n \in \mathbb{C} \} \]

Then there is an isomorphism between \(\mathcal{C}_2 \) and \(\mathcal{C}_2' \), in that case, we can write

\[\mathcal{B}_n = (\mathcal{F}_n, \mathcal{F}_{n+1}, \mathcal{F}_{n+2}, \mathcal{F}_{n+3}) \rightarrow \mathcal{B}_n = \begin{bmatrix} \mathcal{F}_n + \mathcal{F}_{n+1} i_1 & \mathcal{F}_{n+2} + \mathcal{F}_{n+3} i_1 \\ \mathcal{F}_{n+2} + \mathcal{F}_{n+3} i_1 & \mathcal{F}_n + \mathcal{F}_{n+1} i_1 \end{bmatrix}. \]

Thus, we can write

\[\mathcal{C}_2 = \{ \mathcal{B}_n | \mathcal{B}_n = \alpha_n \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \beta_n \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} ; \alpha_n, \beta_n \text{ is } n^{th} \ \text{complex Jacobsthal matrix} \}

and

\[\mathcal{B}_n = \mathcal{F}_n U_1 + \mathcal{F}_{n+1} U_2 + \mathcal{F}_{n+2} U_3 + \mathcal{F}_{n+3} U_4, \]

where

\[\mathcal{B}_n = \mathcal{F}_n \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \mathcal{F}_{n+1} \begin{bmatrix} i_1 & 0 \\ 0 & i_1 \end{bmatrix} + \mathcal{F}_{n+2} \begin{bmatrix} 0 & i_2 \\ i_2 & 0 \end{bmatrix} + \mathcal{F}_{n+3} \begin{bmatrix} 0 & i_3 \\ i_3 & 0 \end{bmatrix}. \]

Since \(\text{det} \mathcal{B}_n \neq 0 \), there is the inverse of matrix \(\mathcal{B}_n \) and it is in \(\mathcal{C}_2' \).

Definition 4.1. The \(n^{th} \) bicomple Jacobsthal vectors \(\overline{\mathcal{B}}_n \) and the \(n^{th} \) bicomplex Jacobsthal-Lucas vectors \(\overline{\mathcal{B}}'_n \) with matrix components are defined as

\[\overline{\mathcal{B}}_n = \mathcal{F}_{n+1} i_1 + \mathcal{F}_{n+2} i_2 + \mathcal{F}_{n+3} i_3 \]

and

\[\overline{\mathcal{B}}'_n = \mathcal{F}'_{n+1} i_1 + \mathcal{F}'_{n+2} i_2 + \mathcal{F}'_{n+3} i_3, \]

respectively.

Theorem 4.1. Let \(\overline{\mathcal{B}}_n \) and \(\overline{\mathcal{B}}_{n+1} \) be bicomplex Jacobsthal vectors. The cross product is defined as

\[\overline{\mathcal{B}}_n \times \overline{\mathcal{B}}_{n+1} = \text{det} \begin{bmatrix} i_1 & i_2 & i_3 \\ \mathcal{F}_{n+1} & \mathcal{F}_{n+2} & \mathcal{F}_{n+3} \\ \mathcal{F}_{n+2} & \mathcal{F}_{n+3} & \mathcal{F}_{n+4} \end{bmatrix} \]

where in the permanent of \(\overline{\mathcal{B}}_n \times \overline{\mathcal{B}}_{n+1} \), the signatures of the permutations are not taken into account, [17].

Proof. Now, if we calculate \(\overline{\mathcal{B}}_n \times \overline{\mathcal{B}}_{n+1} \), we obtain

\[= (\mathcal{F}_{n+2} \mathcal{F}_{n+4} + \mathcal{F}_{n+3} \mathcal{F}_{n+3}) i_1 - (\mathcal{F}_{n+1} \mathcal{F}_{n+4} + \mathcal{F}_{n+2} \mathcal{F}_{n+3}) i_2 + (\mathcal{F}_{n+1} \mathcal{F}_{n+3} + \mathcal{F}_{n+2} \mathcal{F}_{n+2}) i_3 \]

\[= 2\mathcal{F}_{2n+4} i_1 - 2\mathcal{F}_{n+3} i_2 + 2\mathcal{F}_{n+4} i_3 \]

\[= 2(\mathcal{F}_{2n+6} - \mathcal{F}_{2n+3}) i_1 - 2\mathcal{F}_{2n+4} i_2 + 2(\mathcal{F}_{2n+2} - \mathcal{F}_{2n+3}) i_3 \]

\[= 2(\mathcal{F}_{2n+2} i_1 + \mathcal{F}_{n+3} i_2 + \mathcal{F}_{n+3} i_3) + 2(\mathcal{F}_{2n+6} - \mathcal{F}_{2n+2}) i_1 - 2(\mathcal{F}_{n+5} + \mathcal{F}_{n+3}) i_2 \]

128
Finally, we have

\[F_{2n} \left(\begin{bmatrix} 40 & 40 \\ 20 & 14 \end{bmatrix} \right) = B_{2n+1}, \]

where \(B_{2n+1} \) is bicomplex Jacobsthal vector.

5 Conclusion

In this study, we firstly introduced bicomplex Jacobsthal numbers and bicomplex Jacobsthal-Lucas numbers and matrices. Then, we give some identities that hold an important place in the literature on these matrices. We have also given bicomplex Jacobsthal vector \(B_n \) with \(F \)-matrix component to exert in geometry.

Competing Interests

Authors have declared that no competing interests exist.

References

© 2023 Atasoy and Babadağ: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
https://www.sdiarticle5.com/review-history/102364