Abstract

The technical details of RSA works on the idea that it is easy to generate the modulus by multiplying two sufficiently large prime numbers together, but factorizing that number back into the original prime numbers is extremely difficult. Suppose that \(N = p^r q^s \) are RSA modulus, where \(p \) and \(q \) are product of two large unknown of unbalance primes for \(2 \leq s < r \). The paper proves that using an approximation of \(\phi(N) \approx N - N^{r+s-1} \left(\lambda \frac{1}{2p} + \lambda \frac{1}{2q} \right) + N^{r+s-2} \lambda \frac{1}{2p^2} \), private keys \(\frac{x^2}{y^2} \) can be found from the convergents of the continued fractions expansion of

\[
\frac{e}{N - N^{r+s-1} \left(\lambda \frac{1}{2p} + \lambda \frac{1}{2q} \right) + N^{r+s-2} \lambda \frac{1}{2p^2}} < \frac{1}{2x^4}
\]
which leads to the factorization of the moduli $N = p^r q^s$ into unbalance prime factors p and q in polynomial time. The second part of this research report further, how to generalized two system of equations of the form $e_x x^2 - y_u^2 \phi(N_u) = z_u$ and $e_x x^2 - y^2 \phi(N_u) = z_u$ using simultaneous Diophantine approximation method and LLL algorithm to find the values of the unknown integers $x, y_u, \phi(N_u)$ and $x, y, \phi(N_u)$ respectively, which yeild to successful factorization of k moduli $N_u = p_u^r q_u^s$ for $u = 1, 2, \cdots k$ in polynomial time.

Keywords: Factorization; LLL algorithm; diophantine approximations; unbalance prime; continued fraction.

1 Introduction

The use of public-key cryptography differs dramatically from previous methods. All cryptographic systems have relied on the fundamental tools of substitution and permutation up to the present day [1],[2]. However, in contrast to typical single-key encryption, public-key algorithms are based on mathematical functions and are asymmetric in nature, requiring the usage of two keys. Several myths concerning public keys exist:

1. That public key encryption is more resistant to cryptanalysis than other types of encryption. In truth, the security of any system is determined by the length of the key and the computational labor required to crack the encryption [3],[4].

2. Single key encryption has been replaced with public key encryption. Due to the additional processing power required, this is improbable.

3. This is incorrect: key management is straightforward with public key cryptography[5].

A one-way function is a function that maps a domain into a range and has a unique inverse for each function value, with the constraint that the function is easy to calculate but the inverse is impossible:

$$Y = f(x) \quad \text{easy}$$

$$X = f^{-1}(Y) \quad \text{infeasible}$$

A problem is described as ”easy” if it can be solved in polynomial time as a function of input length (n). For instance, the computation time is proportional to n^a, where a is a constant. However, the term ”infeasible” is not properly defined. In general, if the effort to solve the problem is larger than polynomial time, the problem is infeasible, for example, if the time to compute is proportional to 2^n.

Trapdoor one-way functions are a family of invertible functions f_k such that $Y = f_k(X)$ is easy if k and X known, $X = f_k(Y)$ is easy if k and Y are known, and $X = f_k^{-1}(Y)$ is infeasible if Y is known but k is not known.

The discovery of an appropriate trapdoor one-way function is required for the construction of a workable public-key scheme.

The integer factorization problem was used to secure the RSA modulus $N = pq$ where p and q are positive big prime numbers of equal bit length. The key equation is $ed - k\phi(N) = 1$ where (e, N) and $(d,k,\phi(N),p,q)$ represent public and private keys, respectively. The key generation, encryption, and decryption methods in the RSA crypotsystem are detailed in [6]. Many factoring modulus $N = pq$ attacks can be found in [7], [8], [9], [10], [11], [12] among others. [13] was the first to report an RSA version for $r \geq 2$ that used the multi prime power modulus $N = p^r q^s$. Takagi claims to have proved that his method encrypted data faster than the traditional RSA modulus $N = pq$. Since then, numerous attacks on the moduli $N = p^r q$ for $rgeq 2$ have been documented, using a variety of tactics detailed in [14], [15], [16] and [17]. Prime moduli $N = p^r q^s$ is one of the RSA crypotsystem variants that has been found to have higher decryption efficiency than regular RSA modulus $N = pq$, according to [18], [19]. Using complicated mathematics and logic, the cryptosystem enables secrecy and authenticity in digital communication channels. The integer factorization problem contains the cryptosystem’s security. The prime power moduli go through the same key generation, encryption, and decryption operations as the normal
RSA cryptosystem, with the exception that the decryption phase is faster.

Lim (2000) described a cryptanalysis attack on prime power moduli $N = p^r q^s$, using Takagi’s approach to discover prime factors (p, q) when $\gcd(r, s) = 1$. They demonstrated that their technique decrypted data 15-times faster than the usual RSA cryptosystem, according to [19]. Lu (2015) published another partial key exposure attack on the moduli $N = p^r q^s$ where $\gcd(r, s) = 1$, demonstrating that $\min \left(\frac{1}{r+1}, \frac{2^{(r-1)}}{r+1}\right)$ fraction of least significant bit(s) (LSBs) or most significant bit(s) (MSBs) of p is necessary to factor N in polynomial time [20].

Theorem 1.1. Let $x \in \mathbb{R}$ and $\frac{p}{q}$ be a rational fraction such that $\gcd(p, q) = 1$ and $q < b$ if $x = \frac{p}{q}$ with $\gcd(a, b) = 1$. If

$$\left|x - \frac{p}{q}\right| \leq \frac{1}{2q^2},$$

then $\frac{p}{q}$ is count among the convergent of the continued fraction expansion of x.

Theorem 1.2. (Simultaneous Diophantine Approximations) For given rational numbers of the type $\omega_1, ..., \omega_n$ and $0 < \varepsilon < 1$, there is a polynomial-time procedure to compute integers $p_1, ..., p_n$ and a positive integer q such that

$$\max_i |q\omega_i - p_i| < \varepsilon \quad \text{and} \quad q \leq 2^{\frac{n-1}{\varepsilon}} [15].$$

2 Factoring $N = p^r q^s$ By Applying The Continued Fraction Method

In this section, we present results using continued fractions to factor multi prime power modulus $N = p^r q^s$ with $2 \leq s < r$ for some unknown parameters $(\phi(N), x, y, p, q)$ using one of the appropriate approximation of $\phi(N)$ given as $\phi(N) \approx N - N^{\frac{r+1}{2}} (\lambda^{\frac{1}{r+1}} + \lambda^{\frac{r}{r+1}}) + N^{\frac{r+1}{2}} \lambda^{\frac{1}{r+1}}$ where (N, e) are public keys satisfying key equation $ex^2 - y^2 \phi(N) = z$.

Let $N = p^r q^s$ be multi prime power moduli where p and q are unbalance prime numbers for $2 \leq s < r$. If $q < p < \lambda q$ and $q^s < p^r < \lambda q^s$, then

$$\lambda^{-\frac{n}{2}} N^{\frac{1}{2}} < q < N^{\frac{1}{2}} < p < \lambda^{-\frac{n}{2}} N^{\frac{1}{2}},$$

and approximation of

$$\phi(N) \approx N - N^{\frac{r+1}{2}} (\lambda^{\frac{1}{r+1}} + \lambda^{\frac{r}{r+1}}) + N^{\frac{r+1}{2}} \lambda^{\frac{1}{r+1}}.$$

Proof. Assume that $N = p^r q^s$, $q < p < \lambda q$ and $q^s < p^r < \lambda q^s$ for $2 \leq s < r$ with $\lambda > 2$, then, $\phi(N) = p^r q^s$, $p^r < \lambda \phi(N)$ which implies $N < p^{2r} < \lambda N$, hence $N^{\frac{1}{2}} < p < \lambda^{-\frac{1}{2}} N^{\frac{1}{2}}$. Therefore, since $N = p^r q^s$, then $q^s = \frac{N}{p^r}$ as a result of which $\lambda^{-\frac{1}{2}} N^{\frac{1}{2}} < q < N^{\frac{1}{2}}$. Since p and q are unbalance prime numbers, for $\lambda > 2$, we have

$$\lambda^{-\frac{1}{2}} N^{\frac{1}{2}} < q < N^{\frac{1}{2}} < p < \lambda^{-\frac{1}{2}} N^{\frac{1}{2}}.$$

Also, using the modulus $N = p^r q^s$ then th eulers totian function $\phi(N) = p^{r-1} q^{s-1} (p - 1) (q - 1)$, allowed us to yield an approximation of $\phi(N)$ using the primes $p \approx N^{\frac{1}{2}}$ and $q \approx \lambda^{-\frac{1}{2}} N^{\frac{1}{2}}$ as follows:

$$\phi(N) \approx p^{r-1} q^{s-1} (p + 1) = p^r q^s - (p^r q^{s-1} + p^{r-1} q^s) + p^{r-1} q^{s-1} = N - (p^r q^{s-1} + p^{r-1} q^s) + p^{r-1} q^{s-1}.$$
Theorem 2.1. Let \(N = p^r q^s \) be a multi prime power modulus, where \(p \) and \(q \) are unbalance prime numbers with \(q < p < \lambda q \) and \(q^s < p^r < \lambda q^s \) and \(2 \leq s < r \) with \(\lambda > 2 \). Also, suppose that \((e, N)\) and \((x, p, q, \phi(N))\) are tuples of public and private keys, respectively, such that \(e^{x^2} - y^2 \phi(N) = z \) where \(1 < e < \phi(N) < N - N^{\frac{r-1}{2r}} \left(\frac{1}{\lambda} + \frac{\lambda}{\lambda^2} \right) + N^{\frac{r-1}{2r}} \frac{1}{\lambda} \) with \(\gcd(x, y) = 1 \) and \(z < N^{\frac{1}{2} + \alpha} \). Let \(\mu = p^{r-2} q^{s-2} (p-1)(q-1) \) become well-known. If \(p \approx N^{\frac{1}{r}} \) and \(q \approx N^{\frac{1}{r}} \) and \(z < N^{\frac{1}{2} + \alpha} \) then

\[
x < \frac{N^{\frac{1}{2}} - N^{\frac{r-1}{2r}} \left(\frac{1}{\lambda^2} + \frac{1}{\lambda^3} \right) + N^{\frac{r-2}{2r}} \frac{1}{\lambda^4}}{\sqrt{2N^{\frac{1}{2} + \alpha}}} \]

and

\[
\left| \frac{e}{N - N^{\frac{r+1}{2r}} \left(\frac{1}{\lambda^2} + \frac{1}{\lambda^3} \right) + N^{\frac{r-1}{2r}} \frac{1}{\lambda^4}} - \frac{z}{x^2} \right| < \frac{1}{2x^4}, \text{ as a result of which } N \text{ is factorized into unbalance prime factors } p \text{ and } q \text{ in polynomial time.}
\]

Proof. Assume that \(N = p^r q^s \) for \(2 \leq s < r \) be multi prime power modulus satisfying \(q < p < \lambda q \) and \(q^s < p^r < \lambda q^s \), with \(z = N^{\frac{1}{2} + \alpha} \) then \(e^{x^2} - y^2 \phi(N) = z \) where \(\phi(N) = p^{r-1} q^{s-1} (p-1)(q-1) \), can be rewritten as

\[
ex^2 - y^2 \left(N - N^{\frac{r+1}{2r}} \left(\frac{1}{\lambda^2} + \frac{1}{\lambda^3} \right) + N^{\frac{r-1}{2r}} \frac{1}{\lambda^4} \right) = z
\]

Dividing by \(x^2 \left(N - N^{\frac{r+1}{2r}} \left(\frac{1}{\lambda^2} + \frac{1}{\lambda^3} \right) + N^{\frac{r-1}{2r}} \frac{1}{\lambda^4} \right) \) gives

\[
\left| \frac{e}{N - N^{\frac{r+1}{2r}} \left(\frac{1}{\lambda^2} + \frac{1}{\lambda^3} \right) + N^{\frac{r-1}{2r}} \frac{1}{\lambda^4}} - \frac{z}{x^2} \right| = \frac{2}{x^2}
\]

\[
= \frac{2}{x^2} \left(N - N^{\frac{r+1}{2r}} \left(\frac{1}{\lambda^2} + \frac{1}{\lambda^3} \right) + N^{\frac{r-1}{2r}} \frac{1}{\lambda^4} \right)
\]

\[
= N^{\frac{1}{2} + \alpha}
\]

Therefore, from Theorem 1.1 we can write

\[
\frac{N^{\frac{1}{2} + \alpha}}{x^2 \left(N - N^{\frac{r+1}{2r}} \left(\frac{1}{\lambda^2} + \frac{1}{\lambda^3} \right) + N^{\frac{r-1}{2r}} \frac{1}{\lambda^4} \right)} < \frac{1}{2x^4}
\]

then

\[
x < \frac{N^{\frac{1}{2}} - N^{\frac{r-1}{2r}} \left(\frac{1}{\lambda^2} + \frac{1}{\lambda^3} \right) + N^{\frac{r-2}{2r}} \frac{1}{\lambda^4}}{\sqrt{2N^{\frac{1}{2} + \alpha}}}.
\]
Proof. In this section, we show that if u can be factored utilizing Diophantine Approximation and lattice basis reduction approaches at the same time.

Algorithm 1: An outline on how Theorem 2.1 works

1. Initialization: The public key pair (N, e) and μ satisfying Theorem 2.1.
2. Choose r, s, to be appropriate modest positive integers where $2 \leq s < r$.
3. for any (r, s) do
4. The convergents $\frac{p^2}{q^2}$ of the continued fractions expansion of
5. $\left(N - N^{r + s - 1} \left(\frac{1}{2r} \lambda^u \phi u + \frac{1}{2r} \lambda^u \phi u \right) \right)$
6. end for
7. Compute $\phi(N) := \frac{p^2 - q^2}{N}$
8. Compute $G := \gcd(\phi(N), N)$
9. Compute $p^{r - 2} := \gcd(\mu, G)$
10. Compute $q^s := \frac{N}{p^r}$
11. return prime factors p and q.

Hence $\frac{p^2}{q^2}$ can be obtained from the convergents of the continued fractions expansion of

$$\left(N - N^{r + s - 1} \left(\frac{1}{2r} \lambda^u \phi u + \frac{1}{2r} \lambda^u \phi u \right) \right).$$

\square

2.1 System of Equations Using $N_u - N_u^{r + s - 1} \left(\frac{1}{2r} \lambda^u \phi u + \frac{1}{2r} \lambda^u \phi u \right)$

In this section, we show that if $e_u < \phi(N_u) < N_u - N_u^{r + s - 1} \left(\frac{1}{2r} \lambda^u \phi u + \frac{1}{2r} \lambda^u \phi u \right) + N_u^{r + s - 2} \frac{1}{2r} \lambda^u \phi u$, then $N_u = p_u^rq_u^s$ can be factored utilizing Diophantine Approximation and lattice basis reduction approaches at the same time.

Theorem 2.2. Let $N_u = p_u^rq_u^s$ for $u = 1, 2, \ldots, k$ be the multi prime power moduli with unbalance prime factors p and q such that $q < p < \sqrt[3]{q}$, $q^s < p^s < \lambda^u \phi u$, $2 \leq s < r$, $\lambda > 2$. Suppose that $Y_u = p_u^{r - 2}q_u^{-2}(p_u - 1)(q_u - 1)$ be known. Let (e_u, N_u) and $(x, p_u, q_u, \phi(N_u))$ be public and private key tuples respectively. If $1 < e_u < \phi(N_u) < \left(N_u - N_u^{r + s - 1} \left(\frac{1}{2r} \lambda^u \phi u + \frac{1}{2r} \lambda^u \phi u \right) + N_u^{r + s - 2} \frac{1}{2r} \lambda^u \phi u \right)$ and $N = \min\{N_u\}$, with existence of the unknown positive integers $x, y, z < N^\lambda$, define $a = \frac{2(e_u - \phi(N_u) - 2\lambda)}{2(1 + \lambda)}$ for $0 < A, \delta < 1$ satisfying the general equation $\epsilon u x^2 - y_u^2 (\phi(N_u)) = z_u$, then k prime power moduli N_u can be recovered concurrently in polynomial time for $u = 1, \ldots, k$.

Proof. Suppose $N_u = p_u^rq_u^s$ for $u = 1, 2, \ldots, k$ be the multi prime power moduli for $r, s > 0$ and $k > s$ with $N = \min\{N_u\}$, let $G = N_u^{r + s - 1} \left(\frac{1}{2r} \lambda^u \phi u + \frac{1}{2r} \lambda^u \phi u \right)$ if $y < N^\lambda$, then $e_u x^2 - y_u^2 \phi(N_u) = z_u$ can be rewritten as

$$e_u x^2 - y_u^2 (p_u^{r - 1}q_u^{-1}(p_u - 1)(q_u - 1)) = z_u$$

$$e_u x^2 - y_u^2 \left(N_u - N_u^{r + s - 1} \left(\frac{1}{2r} \lambda^u \phi u + \frac{1}{2r} \lambda^u \phi u \right) \right) + N_u^{r + s - 2} \frac{1}{2r} \lambda^u \phi u = z_u$$

$$e_u x^2 - y_u^2 \left(N_u - G + G - \left(N_u - \phi(N_u) + N_u^{r + s - 2} \frac{1}{2r} \lambda^u \phi u \right) \right) + N_u^{r + s - 2} \frac{1}{2r} \lambda^u \phi u = z_u$$
Suppose \(N = \min\{N_i\} \) and \(y_i < N^\alpha \), then
\[
G - N_u + \phi(N_u) > \frac{s_i}{r_i} N, \quad \text{for } r, s > 0 \text{ with } r > s \text{ and }
\]
\[
\left| \frac{e_u x^2 - y_u^2}{N_u - G + \lambda_u^{-\kappa} N_u^{\frac{r+s-2}{2}}} \right| = \left| \frac{z_u + y_u^2}{N_u - G + \lambda_u^{-\kappa} N_u^{\frac{r+s-2}{2}}} \phi(N_u) \right|
\]
\[
\leq \frac{N^\beta + (N^\alpha)^2 \left(N^{\alpha + \frac{1}{2}} A \right)}{x^2 - y^2}
\]
\[
\leq \frac{N^\beta + N^{3\alpha + \frac{1}{4}}}{x^2 - y^2}
\]
\[
< \left(\frac{r + 1}{r} \right) N^{3\alpha + \frac{1}{4} + \beta - 1}
\]
This implies
\[
\left| \frac{e_u x^2 - y_u^2}{N_u - G + \lambda_u^{-\kappa} N_u^{\frac{r+s-2}{2}}} \right| < \left(\frac{r + 1}{r} \right) N^{3\alpha + \frac{1}{4} + \beta - 1}
\]
For the unknown integer positive integer \(x \), we assume that \(\varepsilon = \left(\frac{r+1}{r} \right) N^{3\alpha + \frac{1}{4} + \beta - 1} \), with \(\alpha = \frac{3(2k - (4k-2)h)}{4(1+3k)} \), then
\[
N^\alpha \varepsilon^k = N^\alpha \left(\frac{r+1}{r} \right)^k \left(N^{3\alpha + \frac{1}{4} + \beta - 1} \right)^k = \left(\frac{r+1}{r} \right)^k
\]
For \(\left(\frac{r+1}{r} \right)^k < 2^{\frac{4k-1}{4}} \cdot 3^k \) with \(k \geq 2 \), we get \(N^\alpha \varepsilon^k < 2^{\frac{4k-3}{4}} \cdot 3^k \). It follows that if \(x < N^\alpha \) then \(x < 2^{\frac{4k-3}{4}} \cdot 3^k \cdot \varepsilon^{-k} \). Hence
\[
\left| \frac{e_u x^2 - y_u^2}{N_u - G + \lambda_u^{-\kappa} N_u^{\frac{r+s-2}{2}}} \right| < \varepsilon, \quad x < 2^{\frac{4k-3}{4}} \cdot 3^k \cdot \varepsilon^{-k}.
\]
Using Theorem 1.2, we can obtained the unknown integers \(x \) and \(y_u \). This can be shown by looking at \(e_u x^2 - y_u^2 \phi(N_u) = z_u \) we get
\[
\phi(N_u) = \frac{e_u x^2 - y_u^2}{y_u^2}
\]
\[
\gcd(\phi(N_u), N_u) = R_u
\]
\[
p_u^{e-2} = \gcd(Y_u, R_u)
\]
\[
q_u = \frac{N_u}{p_u}
\]
Finally, in polynomial time, the prime factors \((p_u, q_u) \) of the prime power moduli \(N_u \) may be discovered concurrently, for \(N_u \) for \(u = 1, \ldots, k \).
Let
\[
\Delta_1 = \frac{\epsilon_1}{N_1 - G_1 + \lambda_1^{\frac{1}{2^r}} N_1^{\frac{1}{2^r}}}, \quad \Delta_2 = \frac{\epsilon_2}{N_2 - G_2 + \lambda_2^{\frac{1}{2^r}} N_2^{\frac{1}{2^r}}}, \quad \Delta_3 = \frac{\epsilon_3}{N_3 - G_3 + \lambda_3^{\frac{1}{2^r}} N_3^{\frac{1}{2^r}}}
\]

Algorithm 2: An outline on how Theorem 2.2 works

1: Initialization: The public key pair \((N_u, e_u)\) and \(Y_{2u}\) satisfying Theorem 2.2.
2: Choose \(r, s, t \geq 2\), \(r > s\) and \(N = \max\{N_u\}\) for \(u = 1, \ldots, k\).
3: for any \((N, \omega, \Lambda)\) do
 4: \(\varepsilon := \left(\frac{r+1}{r}\right) N^{3\alpha + \frac{3}{4}} + \delta - 1\) where \(\alpha = \frac{2(k)-(Ak)-2(k)}{2r(1+3k)}\)
 5: \(\xi := [3^{k+1} \times 2^{(k+1)(k-4)} \times \varepsilon^{-k-1}]\) for \(k \geq 2\).
 6: end for
7: Considering the \(L\) lattice spanned by the matrix \(T\), as shown below.
8: The reduced basis matrix \(A\) is obtained using the LLL algorithm on \(L\).
9: for any \((T, A)\) do
 10: \(L := T^{-1}\)
 11: \(S = LA\).
 12: end for
13: Recover \(x, y_u\) from \(S\).
14: for each triplet \((x, y_u, e_u)\) do
 15: \(\phi(N_u) := \frac{e_u x^2 - z_u}{y_u^2}\)
 16: \(R_u := \gcd\left(\phi(N_u), N_u\right)\)
 17: \(p_u^{r-2} := \gcd\left(Y_{2u}, R_u\right)\)
 18: \(q_u := \frac{N_u}{p_u}\)
 19: end for
20: return the essential factors \((p_u, q_u)\) back.

Example 2.3. We look at the three prime power moduli and their three public exponents.

\[
\begin{align*}
N_1 &= 68749111618579656805630930162358750193483939735411761241763924238621 \\
N_2 &= 105723455152130639863520469642754020435834421033251045699872997 \\
N_3 &= 5710274774583732901893677646514917766747906589423518381163537911 \\
e_1 &= 219267129246669196531085440608365300865898815577246813522634444273 \\
e_2 &= 9394950339116937596274269712962249856073359703983195160914413 \\
e_3 &= 27002472260329590753712468131199332235272856973239055160027243832
\end{align*}
\]

Let the following integers be known

\[
\begin{align*}
Y_{21} &= 497316993318944823402424179633912553279064 \\
Y_{22} &= 22678630853988774936074585530637605980 \\
Y_{23} &= 878007232132353461793573970486243467484
\end{align*}
\]
Then $N = \min(N_1, N_2, N_3)$ = 687491161857965680563093016235875019348393753411761241763924238621, k = 3$ with $\alpha = \frac{2(k)-(\Lambda_k-2)k}{2(1+3k)} = 0.1056300000$ and $\varepsilon := \left(\frac{r+1}{r}\right)N^{3\alpha+\frac{2}{3}+\delta-1} = 0.006084582790$. Using Theorem 1.1, we obtain
\[
\xi = \left[3^{k+1}.2^{\frac{(k+1)(k-4)}{4}}\right]^\varepsilon = 29548252700
\]

Consider the lattice \mathcal{L} spanned by the matrix:

\[
T = \begin{bmatrix}
1 & -[\xi \Delta_1] & -[\xi \Delta_2] & -[\xi \Delta_3] \\
0 & \xi & 0 & 0 \\
0 & 0 & \xi & 0 \\
0 & 0 & 0 & \xi \\
\end{bmatrix}
\]

As a result, using the LLL algorithm to \mathcal{L}, We get the decreased basis as shown below.

\[
A = \begin{bmatrix}
25479047 & 20637627 & 17974538 & 25718111 \\
52727986 & -28856574 & 6993144 & 20699382 \\
2923909 & 20860269 & 69662086 & -55628983 \\
35984242 & 54428522 & -5163342 & 26473154 \\
\end{bmatrix}
\]

Next, we compute

\[
S = \begin{bmatrix}
25479047 & 8126239 & 22641818 & 12048409 \\
52727986 & 16816964 & 48656441 & 24933756 \\
2923909 & 932546 & 2598316 & 1382644 \\
35984242 & 11476746 & 31977203 & 17016055 \\
\end{bmatrix}
\]

Then, from the first row of matrix S get $x = 25479047$, $y_1 = 8126239$, $y_2 = 22641818$, $y_3 = 12048409$. Hence using x and y_u for $u = 1, 2, 3$, we compute $V_u = \frac{\epsilon x u^{2+3u}}{y_u} = \phi(N_u) = p_u^{-1} q_u^{-1} (p_u - 1)(q_u - 1)$

$V_1 = 6874911618579656680563093016235875019348393753411761241763924238621$

$V_2 = 105722345114106159658000582323762180717394584938616490544282656$

$V_3 = 57102747743468377477406303994162285655507804572424908473215780392988$

Algorithm 2.4 is used to produce $R_u = \gcd(\phi(N_u), N_u)$ and $p_u^{-2} = \gcd(V_u, R_u)$, for $i = 1, 2, 3$

$R_1 = 49731699332043098543393708758157063263$

$R_2 = 22678630854225065955675600451973411232$

$R_3 = 878007231231418251312720523804330520014423$

$p_1 = 359748903791989$

$p_2 = 48648211020653$

$p_3 = 135001682080439$

Finally, we compute $q_u := \frac{N_u}{p_u^2}$ for $u = 1, 2, 3$, that is

$q_1 = 384268106903$, $q_2 = 95825938969$, $q_3 = 481747793063$.

This results in polynomial time factorization of three moduli $N_1, N_2,$ and N_3.

Theorem 2.4. Let $N_u = p_u^{e_u} q_u^{s_u}$ for $r, s > 2, r > s$ with $1 \leq u \leq k$ be k multi prime power moduli using unbalance prime p and q such that $q < p < \lambda q$ for $\lambda > 2$ and $M_u = p_u^{-2} q_u^{-2} (p_u - 1)(q_u - 1)\epsilon$ be an integer that is well-known, and (e_u, N_u) are k public key exponents and $(x_u, p_u, q_u, \phi(N_u))$ be the corresponding private keys tuples with $e_u < \phi(N_u) < \left(\frac{N_u-N_u^{\frac{r+1}{r}}}{\lambda u^{2-1}} + \frac{\lambda u^{2}}{\psi}\right) + N_u^{\frac{r+2}{r}} \frac{1}{\lambda u^{2}}$.

Suppose that $\epsilon = \min\{e_u\} = N^3$ and $N = \min\{N_r\}$ for $0 < \beta < 1$. satisfying $e_u x_u^2 - y^2 (\phi(N_u)) = z_u$. If there exist an unknown positive integer $y < N^{\alpha}$ and k integer $x_u < N^{\alpha}$ for all $\alpha = \frac{2(k)-(\Lambda_k-2)k}{2(1+3k)}$, then prime factors p_u and q_u of prime power moduli N_u can be discovered in polynomial time for $u = 1, \ldots, k$ and $0 < \Lambda, \delta < 1$.

60
Proof. Suppose $N_u = p_u^i q_u^k$ be k multi prime power moduli and $N = \max\{N_u\}, e = \min\{e_u\} = N^\beta$, then $e_u x_u^2 - y^2 \phi(N_u) = z_u$ can be rewritten as

$$e_u x_u^2 - y^2 \left(N_u - N_u \frac{r+2}{\lambda_u} \left(\frac{1}{\lambda_u N_u} + \frac{1}{\lambda_u} \right) + N_u \frac{r+3}{\lambda_u} \frac{1}{\lambda_u} \right) = z_u$$

$$e_u x_u^2 - y^2 \left(N_u - G + G - \left(N_u - \phi(N_u) + N_u \frac{r+2}{\lambda_u} \frac{1}{\lambda_u} \right) + N_u \frac{r+3}{\lambda_u} \frac{1}{\lambda_u} \right) = z_u$$

$$e_u x_u^2 - y^2 \left(N_u - G + \frac{1}{\lambda_u N_u} \frac{r+2}{\lambda_u} \frac{1}{\lambda_u} x_u^2 - y^2 \right) = \frac{z_u + y^2 \left(G - N_u + \phi(N_u) - N_u \frac{r+2}{\lambda_u} \frac{1}{\lambda_u} \right)}{e_u} \leq \frac{(N^d + N^{2\alpha} N^{\alpha + \frac{1}{2} \beta})}{N^\beta}$$

$$< \frac{r}{r+1} N^{3\alpha + \frac{1}{2} \beta}$$

Suppose $N = \min\{N_u\}$, and $x_u, y < N^\alpha$ are positive numbers for $u = 1, 2, \ldots, k$, $e = \min\{e_u\} = N^\beta$ for $r, s > 0$ with $r > s$ and $z_u + y^2 \left(G - N_u + \phi(N_u) - N_u \frac{r+2}{\lambda_u} \frac{1}{\lambda_u} \right) < N^{\alpha + \frac{1}{2} \beta}$ for $0 < \Lambda < 1$, $z_u < N^{\frac{1}{2} + \alpha} < N^\delta$

$$\left| \frac{z_u + y^2 \left(G - N_u + \phi(N_u) - N_u \frac{r+2}{\lambda_u} \frac{1}{\lambda_u} \right)}{e_u} \right| \leq \frac{(N^d + N^{2\alpha} N^{\alpha + \frac{1}{2} \beta})}{N^\beta}$$

$$< \frac{r}{r+1} N^{3\alpha + \frac{1}{2} \beta}$$

This implies

$$\left| \frac{z_u + y^2 \left(G - N_u + \phi(N_u) - N_u \frac{r+2}{\lambda_u} \frac{1}{\lambda_u} \right)}{e_u} \right| < \frac{r}{r+1} N^{3\alpha + \frac{1}{2} \beta}.$$

For the unknown integer positive integer x, we assume that $\varepsilon = \frac{r}{r+1} N^{3\alpha + \frac{1}{2} \beta}$, with $\alpha = \frac{2(k-1)+6k-3k}{2(k+3)}$, then

$$N^\alpha \varepsilon^k = \left(\frac{r}{r+1} \right)^k N^{3\alpha + \frac{1}{2} \beta} = \left(\frac{r}{r+1} \right)^k.$$

For $\left(\frac{r}{r+1} \right)^k < 2^k \cdot 3^k$ with $k \geq 2$, we get $N^\alpha \varepsilon^k < 2^k \cdot 3^k$. It follows that if $y < N^\alpha$ then $y < 2^k \cdot 3^k \cdot \varepsilon^k$. Hence

$$\left| \frac{N_u - G + \frac{1}{\lambda_u N_u} \frac{r+2}{\lambda_u} \frac{1}{\lambda_u} x_u^2 - y^2}{e_u} \right| < \varepsilon, \quad y < 2^k \cdot 3^k \cdot \varepsilon^k.$$

We can get the unknown parameters x and y using Theorem 1.2. This can be shown by looking $e_u x_u^2 - y^2 \phi(N_u) = z_u$ we get

$$\phi(N_u) = \frac{e_u x_u^2 - z_u}{y^2}$$

$$\gcd(\phi(N_u), N_u) = H_u$$

$$p^{e_u-2} = \gcd(M_u, H_u)$$

$$q_u = \frac{N_u}{p_u^i}$$
Finally, for N_u, the prime factors (p_u, q_u) of the prime power moduli N_u may be discovered simultaneously in polynomial time for $u = 1, \ldots, k$.

Let

$$
\Delta_1 = \frac{N_1 - G + \lambda_1 \frac{1}{e_1} N_1^{r_1-2}}{e_1}, \quad \Delta_2 = \frac{N_2 - G + \lambda_2 \frac{1}{e_2} N_2^{r_2-2}}{e_2}, \quad \Delta_3 = \frac{N_3 - G + \lambda_3 \frac{1}{e_3} N_3^{r_3-2}}{e_3}
$$

Example 2.5. We look at the three prime power moduli and their three public exponents.

$N_1 = 2279574905548362192767822263212054337340513383062762961302607876914923063841513044224927658449$

$N_2 = 355411814954353436237829133360230405934550757667338273784791207076143108174479068991431267$

$N_3 = 12563684360130557914543205114177450582145868061677715240442851276342568213990275850644825303$

$e_1 = 896315903484424420967637180499618642414768232176395991396554302563849366322263118811660329722$

$e_2 = 262488792749681748783498844039691918361725992924435142872319787414151847686826943513443976$

$e_3 = 25458037772397631853474166271558261532396437778643313308829415967084500100505366231398196544$

Also, let

$$
M_{21} = 4372516634902932534157696086344369086663832980943266100720$

$$
M_{22} = 4989396742845338821065245453312862844518312120738379800$

$$
M_{23} = 931297594781808712142689692832321959670713344803725520$

Then, one can observe that

$$
N = \min\{N_1, N_2, N_3\} = 262488792749681748783498844039691918361725992924435142872319787414151847$

$$
\text{and } e_1, e_2, e_3 = N^3 \text{ with } \beta = 0.9 \text{ and } k = 3 \text{ we get } \varepsilon = \frac{\sqrt{e}}{r^{1.5}} \Rightarrow N^3, N^2 + k - \beta = 0.01145936875 \text{ and } \alpha = \frac{2^{3k-2}k-2k}{2^{(1+k)}} = 0.06016185000. \text{ Using Algorithm 3, we compute}

$$
\xi = \left[b^{k+1} \cdot 2^{(k+1)(k-1)} \cdot \varepsilon^{k-1} \right] = 2348617238.$n

Consider the lattice L spanned by the matrix

$$
C = \begin{bmatrix}
1 & -[\xi \Delta_1] & -[\xi \Delta_2] & -[\xi \Delta_3] \\
0 & \xi & 0 & 0 \\
0 & 0 & \xi & 0 \\
0 & 0 & 0 & \xi
\end{bmatrix}
$$

As a result, using the LLL algorithm to L, We get the decreased basis as shown below

$$
T = \begin{bmatrix}
541467 & -492004 & -43415 & -293812 \\
-5530693 & -9947612 & 4564085 & 5191518 \\
-12248412 & -711876 & 15126944 & -22918192 \\
-23106392 & -13752150 & -28045762 & -15716484
\end{bmatrix}
$$

Next, we compute

$$
L = \begin{bmatrix}
541467 & 137692 & 733211 & 267217 \\
-5530693 & -1406424 & -7489219 & -2729428 \\
-12248412 & -3114702 & -16585813 & -6044660 \\
-23106392 & -5875825 & -31288815 & -11403134
\end{bmatrix}
$$
Algorithm 3 Theorem 2.4

1. Initialization: The public key tuple \((N_u, e_u)\) and \(M_u\) satisfying Theorem 2.4.
2. Choose \(r, s, t \geq 2\), \(r > s\) and \(N = \max\{N_u\}\) for \(u = 1, \ldots, k\).
3. for any \((N, k, A, \beta, \delta)\) do
 4. \(\varepsilon = \frac{r}{r+1} N^{3\alpha + \frac{2}{3} + \delta - \beta}\), where \(\alpha = \frac{2\delta - \Lambda k - 2\delta k}{2(1 + 3k)}\)
 5. \(\xi := [3^{k+1} \times 2^{(k+1)(k-4)} \times \varepsilon^{-k-1}]\) for \(k \geq 2\).
4. end for
5. Considering the lattice \(\mathcal{L}\) spanned by the matrix \(C\), as shown below
6. for any \((C, T)\) do
 7. \(Q := C^{-1}\)
 8. \(L = QT\).
 9. end for
10. Recover \(x_u, y\) from \(L\)
11. for each triplet \((x_u, y, e_u)\) do
 12. \(\phi(N_u) := \frac{r u^2 - Z_u}{y}\)
 13. \(W_u := \gcd(\phi(N_u), N_u)\)
 14. \(p_u^{r-2} := \gcd(M_u, W_u)\)
 15. \(q_u^* := \frac{N_u}{p_u}\)
 16. end for
17. return the essential factors \((p_u, q_u)\).

The first row of the matrix \(L\) yields \(y = 541467\), \(x_1 = 137692\), \(x_2 = 733211\), \(x_3 = 267217\). Hence using \(x_u, y\) and Algorithm 3, we compute \(A_u = \frac{r u^2 - Z_u}{y} = \phi(N_u) = p_u^{r-1} q_u^{k-1} (p_u - 1) (q_u - 1)\), \(W_u = \gcd(\phi(N_u), N_u)\) and \(p_u^{r-2} = \gcd(M_u, W_u)\), for \(u = 1, 2, 3\).

\begin{align*}
A_1 &= 22795749055483576168423172353632910429212224640621185935130451585454971305065555903527147296 \\
A_2 &= 3554411814954318492020455034847285458563304569347660257091831396800711366846142754000 \\
A_3 &= 125636843601304936237846559228669225860530353969921205252669146314811219036578771913467040 \\
W_1 &= 47073612736644320540828236656757087610440470458296678949 \\
W_2 &= 498936742845387873066665190526094762379311831323299329 \\
W_3 &= 93129759478181347776932335477425532246405296652124251489 \\
p_1 &= 97078175929257949449 \\
p_2 &= 70037128935876725323 \\
p_3 &= 69033508418813698007
\end{align*}

Finally, we compute \(q_u^* := \frac{N_u}{p_u}\) for \(u = 1, 2, 3\) which gives

\begin{align*}
q_1 &= 498167216902549, \quad q_2 = 101716491133001, \quad q_3 = 195419811496561
\end{align*}

This results in polynomial time factorization of three moduli \(N_1\), \(N_2\), and \(N_3\).
3 Conclusion

In this research we launch some cryptanalytic attacks on the RSA prime power modulus \(N = p^r q^s \). Hence we shows that \(y^2 x^2 \) is among the convergents of the continued fraction expansion of

\[
\frac{e}{N - N^{\frac{r+s-1}{2}} \left(\lambda^{\frac{1-s}{2}} + \lambda^{\frac{1-r}{2}} \right) + N^{\frac{r+s-2}{2}} \lambda^{\frac{1-s}{2}}}
\]

for \(N - N^{\frac{r+s-1}{2}} \left(\lambda^{\frac{1-s}{2}} + \lambda^{\frac{1-r}{2}} \right) + N^{\frac{r+s-2}{2}} \lambda^{\frac{1-s}{2}} \) as approximation of \(\phi(N) \), which allows us to factored the unbalance prime power modulus \(N = p^r q^s \) if \(x < \frac{N^{\frac{1}{2}} - N^{\frac{r+s-1}{2}} \left(\lambda^{\frac{1-s}{2}} + \lambda^{\frac{1-r}{2}} \right) + N^{\frac{r+s-2}{2}} \lambda^{\frac{1-s}{2}}}{\sqrt{2N^{\frac{1-r-s}{2}}}} \), in polynomial time. Furthermore for \(j \) public keys \((N_u, e_u, M_u, or Y_u)\) where \(M_u = Y_u = p_u^r q_u^s (p_u - 1)(q_u - 1) \) we were able to recovered the unknown parameters \(x, x_u, y, y_u \) through LLL algorithm which enable us to factored \(k \) multi prime power moduli \(N_u = p_u^r q_u^s \) for \(u = 1, 2, 3 \) simultaneously in polynomial time.

Competing Interests

Authors have declared that no competing interests exist.

References

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sdiarticle4.com/review-history/86626