Congruences of Partial Sum of Binomial Coefficients

Lu Subinga and Shen Zhongyana*

a Department of Mathematics, Zhejiang International Studies University, Hangzhou 310023, P.R. China.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2023/v38i81786

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/100798

Received: 27/03/2023
Accepted: 29/05/2023
Published: 15/06/2023

Original Research Article

Abstract

Let $p > 3$ be a prime, using the constant term method and the binomial coefficient expansion, we obtained the congruences of partial sum of binomial coefficients modulo p^2,

$$\sum_{i=1}^{\left\lfloor \frac{p+1}{3} \right\rfloor} \binom{p}{3i-2} \equiv \sum_{i=1}^{\left\lfloor \frac{p}{3} \right\rfloor} \binom{p}{3i-1} \equiv \sum_{i=1}^{\left\lfloor \frac{p}{3} \right\rfloor} \binom{p}{3i} \pmod{p^2}.$$

Keywords: Binomial coefficient; congruence; constant term method; power series expansion.

1 Introduction

The congruence property of binomial coefficient sum is an important research subject in mathematics. In 1878, Lucas [1] proved the congruence theorem of binomial coefficients. Let n_0, k_0 be the remainder of n, k with respect to modulo p, then

*Corresponding author: Email: huanchenszyan@163.com;
\[
\binom{n}{k} \equiv \left\lfloor \frac{n}{p} \right\rfloor \binom{n_0}{k_0} \pmod{p},
\]

where \(\lfloor x \rfloor\) is the greatest integer not greater than \(x\). More generally, for any positive integers \(n\) and \(k\), if

\[
n = n_0 + n_1 p + n_2 p^2 + \cdots + n_d p^d, k = k_0 + k_1 p + k_2 p^2 + \cdots + k_d p^d,
\]

are the base \(p\) expansions of \(n\) and \(k\) respectively, where \(0 \leq n_i, k_i \leq p - 1\), then

\[
\binom{n}{k} \equiv \binom{n_0}{k_0} \binom{n_1}{k_1} \cdots \binom{n_d}{k_d} \pmod{p}.
\]

In 2006, Sun Zhiwei and Pan Hao [2] proved that for any prime number \(p > 3\), then

\[
\sum_{k=0}^{p-1} \binom{2k}{k} \equiv \left\lfloor \frac{p}{3} \right\rfloor \pmod{p},
\]

where \(\left\lfloor \cdot \right\rfloor\) is the Legendre Symbol. In 2011, Sun Zhiwei and Tauraso [3] extended and proved the congruence modulo \(p^2\),

\[
\sum_{k=0}^{p-1} \binom{2k}{k} \equiv \left\lfloor \frac{p}{3} \right\rfloor \pmod{p^2},
\]

and

\[
\sum_{k=0}^{p-1} \frac{1}{k+1} \binom{2k}{k} \equiv \frac{3}{2} \left\lfloor \frac{p}{3} \right\rfloor - \frac{1}{2} \pmod{p^2},
\]

where \(p \geq 5\). Similar congruence on sums of combinatorial sequences have been studied in [4].

q-Analogues of congruences were also widely discussed by several authors (see, for instance, [5–9]).

Apagodu and Zeiberger [10] conjectured that for any prime \(p > 3\) and any positive integer \(r\),

\[
\sum_{k=0}^{p-1} \frac{2k}{k} \equiv \begin{cases}
\alpha_r \pmod{p^2}, & \text{if } p \equiv 1 \pmod{3}, \\
-\alpha_r \pmod{p^2}, & \text{if } p \equiv 2 \pmod{3},
\end{cases}
\]

where

\[
\alpha_r = \sum_{k=0}^{r-1} \binom{2k}{k}.
\]

\[
\frac{1}{n} \left(\sum_{k=0}^{\frac{p-1}{2}} \binom{2k}{k} - \frac{p}{3} \sum_{k=0}^{\frac{n-1}{2}} \binom{2k}{k} \right) \equiv 0 \pmod{p^2}.
\]

Based on the research of Sun Zhiwei and Tauraso [3], the following conclusions are obtained:

Theorem 1: Let \(p \) be an odd prime number, if \(p \equiv 1 \pmod{3} \), we have
\[
\sum_{i=1}^{\frac{p}{3}} \binom{2p}{3i-2} \equiv \sum_{i=1}^{\frac{p}{3}} \binom{2p}{3i-1} \pmod{p^2}.
\]
If \(p \equiv -1 \pmod{3} \), we have
\[
\sum_{i=1}^{\frac{p+1}{3}} \binom{2p}{3i-2} \equiv \sum_{i=1}^{\frac{p+1}{3}} \binom{2p}{3i-1} \pmod{p^2}.
\]

2 Preliminaries

Definition 1 [13]: (Constant term method) Given Laurent polynomial \(P(x_1, x_2, \ldots, x_n) \), define

\[
CT \ P(x_1, x_2, \ldots, x_n)
\]

is the constant term of \(P(x_1, x_2, \ldots, x_n) \) and define

\[
COEEF \ \left[x_1^{m_1} x_2^{m_2} \cdots x_n^{m_n} \right] P(x_1, x_2, \ldots, x_n)
\]

is the coefficient of \(x_1^{m_1} x_2^{m_2} \cdots x_n^{m_n} \).

Lemma 1[3]: Let \(p \) be an odd prime number, then
\[
\sum_{n=0}^{\frac{p-1}{2}} \binom{2n}{n} \equiv \begin{cases} 0 \pmod{p^2}, & \text{if } p = 3, \\ 1 \pmod{p^2}, & \text{if } p \equiv 1 \pmod{3}, \\ -1 \pmod{p^2}, & \text{if } p \equiv -1 \pmod{3}. \end{cases}
\]

Lemma 2[14]: For any real number \(a \), we have
\[
\sum_{i=1}^{n} a q^{i-1} = \begin{cases} a(1 - q^n), & \text{if } q \neq 1, \\ 1 - q, & \text{if } q = 1, \end{cases}
\]

and
\[
\sum_{n=1}^{\infty} aq^{n-1} = \begin{cases}
\infty, & \text{if } |q| \geq 1, \\
\frac{a}{1-q}, & \text{if } |q| < 1.
\end{cases}
\]

3 Proof of Theorem 1

By Definition 1, we have
\[
\sum_{n=0}^{p-1} \binom{2n}{n} \frac{CT}{x^{p-1}} \left[\frac{1}{x} \right]^{p} = CT \sum_{n=0}^{\infty} \left(\frac{(1+x)^{2n}}{x} \right)^{n-1}.
\]
(1)

By Lemma 2, we obtain
\[
\sum_{n=0}^{\infty} \left[\frac{(1+x)^{2n}}{x} \right]^{n} = \frac{1 - \left(\frac{(1+x)^{2}}{x} \right)^{p}}{1 - \frac{(1+x)^{2}}{x}}.
\]
(2)

By (1) and (2), we get
\[
\sum_{n=0}^{p-1} \binom{2n}{n} \frac{CT}{x^{p-1}} = \frac{1 - \left(\frac{(1+x)^{2}}{x} \right)^{p}}{1 - \frac{(1+x)^{2}}{x}}.
\]
(3)

Multiply \(x^p\) on the numerator and denominator of the right-hand side of equation (3), then
\[
\sum_{n=0}^{p-1} \binom{2n}{n} \frac{CT}{x^{p-1}} = \frac{x^p - (1+x)^{2p}}{x^p - (1+x)^{2p} x^{p-1}} \left[x - (1+x)^2 \right] = CT \frac{(1+x)^{2p} - x^p}{(1+x+x^2)x^{p-1}}.
\]
(4)

Since
\[
1 + x + x^2 = \frac{1-x^3}{1-x}.
\]
(5)

Substitute (5) into (4) to get
\[
\sum_{n=0}^{p-1} \binom{2n}{n} \frac{CT}{x^{p-1}} = \frac{(1+x)^{2p} - x^p}{(1-x^3)x^{p-1}}.
\]
(6)

When \(|x| < 1\), we have
\[
\frac{1}{1-x^3} = \sum_{i=0}^{\infty} x^{3i}.
\]
(7)
By (6) and (7), we get

\[
\sum_{n=0}^{p-1} \binom{2n}{n} = CT \frac{1}{x^{p-1}} \left[(1+x)^{2p} - x^{p} \right] \left[(1-x) \sum_{i=0}^{\infty} x^{3i} \right] \\
= CT \frac{1}{x^{p-1}} \left[(1+x)^{2p} - x^{p} \right] \left(\sum_{i=0}^{\infty} x^{3i} - \sum_{i=0}^{\infty} x^{3i+1} \right) \\
= COEEF_{\left[1 \right]^{p-1}} \left[(1+x)^{2p} - x^{p} \right] \left(\sum_{i=0}^{\infty} x^{3i} - \sum_{i=0}^{\infty} x^{3i+1} \right).
\]

(8)

When \(p \equiv 1 \pmod{3} \), we have

\[
COEEF_{\left[1 \right]^{p-1}} \left[(1+x)^{2p} - x^{p} \right] \left(\sum_{i=0}^{\infty} x^{3i} - \sum_{i=0}^{\infty} x^{3i+1} \right) \\
= 1 - \binom{2p}{2} + \binom{2p}{3} - \binom{2p}{5} + \binom{2p}{6} - \cdots - \binom{2p}{p-2} + \binom{2p}{p-1}.
\]

(9)

By Lemma 1, when \(p \equiv 1 \pmod{3} \), we have

\[
\sum_{n=0}^{p-1} \binom{2n}{n} \equiv 1 \pmod{p^2}.
\]

(10)

Combined (8), (9) and (10)

\[
1 - \binom{2p}{2} + \binom{2p}{3} - \binom{2p}{5} + \binom{2p}{6} - \cdots - \binom{2p}{p-2} + \binom{2p}{p-1} \equiv 1 \pmod{p^2}.
\]

Then

\[
\sum_{i=1}^{\left[\frac{p}{3} \right]} \binom{2p}{3i} \equiv \sum_{i=1}^{\left[\frac{p}{3} \right]} \binom{2p}{3i-1} \pmod{p^2}.
\]

(11)

When \(p \equiv -1 \pmod{3} \), we have

\[
COEEF_{\left[1 \right]^{p-1}} \left[(1+x)^{2p} - x^{p} \right] \left(\sum_{i=0}^{\infty} x^{3i} - \sum_{i=0}^{\infty} x^{3i+1} \right) \\
= -1 + \binom{2p}{1} - \binom{2p}{3} + \binom{2p}{4} - \binom{2p}{6} + \cdots - \binom{2p}{p-2} + \binom{2p}{p-1}.
\]

(12)

By Lemma 1, when \(p \equiv -1 \pmod{3} \), we have

\[
\sum_{n=0}^{p-1} \binom{2n}{n} \equiv -1 \pmod{p^2}.
\]

(13)
Combined (11)-(13), we have

\[-1 + \binom{2p}{1} - \binom{2p}{3} + \binom{2p}{4} - \binom{2p}{6} + \cdots - \binom{2p}{p-2} + \binom{2p}{p-1} \equiv -1 \pmod{p^2}.

Then

\[\sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \binom{2p}{3i-2} \equiv \sum_{i=1}^{\lceil \frac{p}{3} \rceil} \binom{2p}{3i} \pmod{p^2}. \tag{14}\]

4 Conclusion

By proof of Theorem 1, if prime \(p > 3 \), we have the congruence

\[\sum_{i=1}^{\lceil \frac{p}{3} \rceil} \binom{2p}{3i-1} \equiv \sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \binom{2p}{3i-2} \pmod{p^2}, \text{ if } p \equiv 1 \pmod{3},
\]

\[\sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \binom{2p}{3i-2} \equiv \sum_{i=1}^{\lceil \frac{p}{3} \rceil} \binom{2p}{3i} \pmod{p^2}, \text{ if } p \equiv -1 \pmod{3}.
\]

We wonder whether the congruence

\[\sum_{i=1}^{\lceil \frac{p}{3} \rceil} \binom{2p}{3i} \equiv \sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \binom{2p}{3i-1} \pmod{p^2}, \text{ if } p \equiv 1 \pmod{3},
\]

\[\sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \binom{2p}{3i-2} \equiv \sum_{i=1}^{\lceil \frac{p}{3} \rceil} \binom{2p}{3i} \pmod{p^2}, \text{ if } p \equiv -1 \pmod{3}.
\]

is established?

It's not hard to prove that it is also true. Since

\[\sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \binom{2p}{3i-2} \equiv \sum_{i=1}^{\lceil \frac{p}{3} \rceil} \frac{2p(2p-1)(2p-2)\cdots(2p-3i+3)}{(3i-2)!} \equiv 2p \sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \frac{(-1)^{3i-3}}{3i-2} \pmod{p^2},
\]

\[\sum_{i=1}^{\lceil \frac{p}{3} \rceil} \binom{2p}{3i-1} \equiv \sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \frac{2p(2p-1)(2p-2)\cdots(2p-3i+1)}{(3i)!} = 2p \sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \frac{(-1)^{3i-1}}{3i} \pmod{p^2},
\]

\[\sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \binom{2p}{3i} \equiv \sum_{i=1}^{\lceil \frac{p}{3} \rceil} \frac{2p(2p-1)(2p-2)\cdots(2p-3i+2)}{(3i-1)!} = 2p \sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \frac{(-1)^{3i-2}}{3i-1} \pmod{p^2}.
\]

When \(p \equiv 1 \pmod{3} \),

\[\sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \binom{2p}{3i-2} \equiv \sum_{i=1}^{\lceil \frac{p}{3} \rceil} \binom{2p}{3i-1} \pmod{p^2}.
\]

\[\sum_{i=1}^{\lceil \frac{p}{3} \rceil} \binom{2p}{3i} \equiv \sum_{i=1}^{\lceil \frac{p+1}{3} \rceil} \binom{2p}{3i} \pmod{p^2}.
\]

\[\sum_{i=1}^{\frac{p+1}{3}} (-1)^{3i-3} \frac{3i-2}{3i} \equiv \sum_{i=1}^{\frac{p}{3}} (-1)^{3i-1} \frac{3i}{3} \pmod{p}, \]

this is because the i-th item on the left is congruent to the reciprocal i-th item on the right with respect to the modulo \(p \), thus

\[\sum_{i=1}^{\frac{p+1}{3}} \binom{2p}{3i-2} \equiv \sum_{i=1}^{\frac{p}{3}} \binom{2p}{3i} \pmod{p^2}. \]

When \(p \equiv -1 \pmod{3} \),

\[\sum_{i=1}^{\frac{p}{3}} (-1)^{3i-2} \frac{3i-1}{3i} \equiv \sum_{i=1}^{\frac{p}{3}} (-1)^{3i-1} \frac{3i}{3} \pmod{p}, \]

this is also because the i-th item on the left is congruent with the reciprocal i-th item on the right with respect to the modulo \(p \), so

\[\sum_{i=1}^{\frac{p}{3}} \binom{2p}{3i} \equiv \sum_{i=1}^{\frac{p}{3}} \binom{2p}{3i-1} \pmod{p^2}. \]

In conclusion, if \(p > 3 \) is a prime, then we obtain the congruences of partial sum of binomial coefficients classified by 3 modulo \(p^2 \),

\[\sum_{i=1}^{\frac{p+1}{3}} \binom{2p}{3i-2} \equiv \sum_{i=1}^{\frac{p}{3}} \binom{2p}{3i-1} \equiv \sum_{i=1}^{\frac{p}{3}} \binom{2p}{3i} \pmod{p^2}. \]

In the future, we want to get more congruences of partial sum of binomial coefficients classified by \(k \) modulo \(p^\alpha(\alpha \geq 2) \).

Acknowledgements

This work is supported by the National Natural Science Foundation of China, Project (No. 12071421).

Competing Interests

Authors have declared that no competing interests exist.

References

© 2023 Subing and Zhongyan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
https://www.sdiarticle5.com/review-history/100798