On Generalized Grahaml Numbers

Main Article Content

Yuksel Soykan

Abstract

In this paper, we introduce the generalized Grahaml sequences and we deal with, in detail, three special cases which we call them Grahaml, Grahaml-Lucas and modified Grahaml sequences. We present Binet’s formulas, generating functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give some identities and matrices related with these sequences.

Keywords:
Fibonacci numbers, Grahaml numbers, Grahaml-Lucas numbers, 3-primes numbers, Lucas 3-primes numbers, Tribonacci numbers.

Article Details

How to Cite
Soykan, Y. (2020). On Generalized Grahaml Numbers. Journal of Advances in Mathematics and Computer Science, 35(2), 42-57. https://doi.org/10.9734/jamcs/2020/v35i230248
Section
Original Research Article

References

Bruce I. A modified Tribonacci Sequence. Fibonacci Quarterly. 1984;22(3):244-246.

Catalani M. Identities for Tribonacci-related sequences, arXiv:math/0209179; 2012.

Choi E. Modular Tribonacci numbers by matrix method. Journal of the Korean Society of

Mathematical Education Series B: Pure and Applied Mathematics. 2013;20(3):207-221.

Elia M. Derived sequences. The Tribonacci Recurrence and Cubic Forms, Fibonacci Quarterly.2001;39(2):107-115.

Er MC. Sums of fibonacci numbers by matrix methods. Fibonacci Quarterly. 1984;22(3):204-

Lin PY. De Moivre-type identities for the Tribonacci numbers. Fibonacci Quarterly.1988;26:131-134.

Pethe S. Some identities for Tribonacci sequences. Fibonacci Quarterly. 1988;26(2):144-151.

Scott A, Delaney T, Hoggatt Jr. V. The Tribonacci sequence. Fibonacci Quarterly.1977;15(3):193-200.

Shannon A. Tribonacci numbers and Pascal’s pyramid. Fibonacci Quarterly. 1977;15(3):268-

Soykan Y. Tribonacci and Tribonacci-Lucas Sedenions. Mathematics. 2019;7(1):74.

Spickerman W. Binet’s formula for the Tribonacci sequence. Fibonacci Quarterly. 1982;20:118-

Yalavigi CC. Properties of Tribonacci numbers. Fibonacci Quarterly. 1972;10(3):231-246.

Yilmaz N, Taskara N. Tribonacci and Tribonacci-Lucas numbers via the determinants of special

Matrices. Applied Mathematical Sciences. 2014;8(39):1947-1955.

Howard FT, Saidak F. Zhou’s theory of constructing identities. Congress Numer. 2010;200:225-

Sloane NJA. The on-line encyclopedia of integer sequences.
Available:http://oeis.org/

Kili¸c E, Stanica P. A matrix approach for general higher order linear recurrences. Bulletin of the Malaysian Mathematical Sciences Society. 2011;34(1):51-67.

Soykan Y. Simson identity of generalized m-step Fibonacci numbers. Int. J. Adv. Appl. Math. and Mech. 2019;7(2):45-56.

Soykan Y. Summing formulas for generalized Tribonacci numbers. arXiv:1910.03490v1
[math.GM]; 2019.

Soykan Y. Summing formulas for generalized Tribonacci numbers. Universal Journal of Mathematics and Applications, Accepted.

Kalman D. Generalized Fibonacci numbers by matrix methods. Fibonacci Quarterly. 1982;20(1):73-76.